RA101495, a subcutaneously-administered peptide inhibitor of complement component 5 (CS), for the treatment of paroxysmal nocturnal hemoglobinuria: phase 2 results

A. Hill1, H. Schrezenmeier2, P. Hillmen1, J. Szer3, H. Pullon4, R. Spearing5, C. Forsyth6, M. Griffin7, J. Ziegler8, A. Kulasekararaj9, A. Kirtland8, H. Weislab10, T. Munro11, M. Griffin12, M. Hoarty13, A. Ricardo14, R. Farzanefar15, and A. Kulasekararaj12

1Department of Hematology, St. James’ Institute of Oncology, Leeds, United Kingdom, 2Center for Transfusion Medicine and Immunogenetics, Umeå University, Umeå, Germany, 3Royal Melbourne Hospital, Melbourne, Australia, 4Westmead Hospital, Hamilton, 5Christchurch Hospital, Christchurch, New Zealand, 6Ann Stret Specialist Center, Gosford, Australia, 7Nagoya University Hospital, Nagoya, Japan, 8Karolinska University Hospital, Solna, Sweden, 9University of Southern California, Los Angeles, 10University of Texas Southwestern Medical Center, Dallas, 11Ra Pharmaceuticals, Inc., Cambridge, United States, 12King’s College School of Medicine, United Kingdom

BACKGROUND

• Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, clonal, hematopoietic stem cell disorder caused by a deficiency of glycosylphosphatidylinositol-anchored proteins (GPI-AP) on cell surfaces. Patients with acquired mutations in the glycosylphosphatidylinositol glycan class A gene lack functional complement regulatory proteins, resulting in abnormal accumulation of complement fragments on the surface of erythrocytes, and subsequent intravascular hemolysis by the membrane attack complex (MAC).

• RA101495 is a synthetic macrocyclic peptide that binds with high affinity to CS and prevents its cleavage into C5a and C5b, thereby preventing the assembly and cytolytic activity of MAC on GPI-AP-deficient erythrocytes. In a completed Phase 1 study in healthy volunteers, subcutaneously-administered RA101495 was safe and well-tolerated, and achieved rapid, complete, and sustained inhibition of complement activity.

AIMS

Studies RA101495-01.201 and RA101495-01.203 are international, multicenter, open-label, Phase 2 dose-finding studies designed to evaluate the safety, tolerability, efficacy, pharmacokinetics, and pharmacodynamics of RA101495 in patients with PNH.

METHODS

• Study RA101495-01.201 enrolled separate cohorts based on prior eculizumab treatment history.
 - The treatment naive cohort recruited 10 patients who had not previously received eculizumab.
 - The eculizumab switch cohort recruited 16 patients who had received treatment with eculizumab for at least 6 months prior to Screening.
• Study RA101495-01.203 recruited 3 patients who had received treatment with eculizumab for at least 6 months prior to Screening with evidence of inadequate response (LDH > 1.5xULN).
• All patients received an initial loading dose of 0.3 mg/kg of RA101495 administered subcutaneously (SC) at the Day 1 visit. Thereafter, patients self-administered once daily SC doses of 0.1 mg/kg or, upon dose escalation, 0.3 mg/kg for 12 weeks.
• The primary endpoint was the change in lactate dehydrogenase (LDH) from baseline to the mean of Week 6-12 values.
• Patients completing 12-weeks of dosing were eligible to enter a long-term extension study.

RESULTS

• RA101495 appears safe and well-tolerated with >700 patient weeks of exposure; no meningococcal infections or thromboembolic events; majority of adverse events unrelated to study drug; most common related adverse event was headache; 9 mild treatment-related adverse events, 6 of which were related to study drug; majority unrelated to study drug; most common related adverse event was headache; 9 mild treatment-naive patients successfully completed 12 weeks of dosing.
• The reduction in LDH levels after initiation of RA101495 was rapid and robust, and has been sustained in the long-term extension study for up to 48 weeks of dosing:

 - Rapid, robust, and sustained LDH reduction primary endpoint p<0.002

• The effect of RA101495 to reduce LDH was accompanied by consistent (95-98%) suppression of complement activity in an ex vivo antibody-sensitized sheep red blood cell (sRBC) direct hemolysis assay (below, left) and in the Weislab ELISA for alternative pathway activity (below, right).

• LDH reductions in treatment-naive patients were also associated with reductions in transfusion dependence (50% of transfusion-dependent naive patients achieved transfusion independence after starting RA101495) and improvements in quality of life (increase of 5.9 points in FACIT fatigue score) from Week 0 to Week 12.

RESULTS (CONTINUED)

• In patients switching from eculizumab to RA101495 (n=19), complete, sustained, and uninterrupted inhibition of complement activity was maintained in the sRBC hemolysis assay before, during, and after eculizumab washout (below, left).
• Despite adequate stoichiometric coverage of C5, a divergent LDH response was observed after switching based on prior transfusion-dependence on eculizumab (below, right).
• Breakthrough intravascular hemolysis leading to early withdrawal and reversion to eculizumab therapy was observed in 7/12 (58%) of transfusion-dependent switch patients but in only 1/17 (5%) of transfusion-independent switch patients.

CONCLUSIONS

RA101495, self-administered by low volume, daily, subcutaneous injection, appears safe and well-tolerated in patients with PNH. RA101495 rapidly and robustly reduces LDH to the levels seen in patients receiving eculizumab, and which are associated with improved long-term outcomes in PNH. These Phase 2 findings support a Phase 3 confirmatory trial and indicate that RA101495 may provide a more convenient and cost-effective treatment for PNH patients.